Bidston Observatory Technology Group

Joe Rae, November 2017

In 1969 Bidston Observatory became a component body of the Natural Environment Research Council and was renamed the Institute of Coastal Oceanography and Tides (ICOT) with an expansion of its oceanographic work. In the ICOT Annual Report for 1969/70 it states:–

“An essential component of any environmental research effort is the acquisition of relevant observations against which theories can be tested. In the marine sciences such fieldwork is invariably expensive both in capital equipment and operating costs; data acquisition systems should therefore be designed for maximum efficiency and minimum maintenance. It follows that such a system will provide a basis for the long-term monitoring of oceanographic variables, the analysis of which can be expected to yield a bonus in the same way that barometers and thermometers have contributed to both synoptic meteorology and climatology.”

“Dr Skinner was appointed head of the new instrument section in January (1970) and has commenced a critical survey of sensors, instrumentation techniques and data acquisition systems currently available in the field of coastal oceanography. Progress has been made in equipping design and maintenance facilities, and special attention is being paid to test and calibration facilities for transducers and specialised instrumentation.”

I joined ICOT in 1971 after ten years at the Atomic Energy Research Establishment at Harwell. On arrival at Bidston I was given a desk in what was originally the Morning Room of the Observatory which had been divided into two offices. One of these offices was occupied by Len Skinner, then Head of the Research Technology Division, and the other I shared with Ivor Chivers and Judith Daniels. Other technology staff, Alan Harrison, Alex Kerr, Tony Banaszek, Chris Walker, Bev Hughes and Doug Leighton, who was at that time the Tide Gauge Inspector, occupied rooms in the basement of the Observatory originally called the Cellars. In 1972 a prefabricated hut was erected on the front lawn of the Observatory to house the mechanical engineering workshop which was supervised by Kevin Taylor.

The Research Technology Division was organised into three sections, the Instrumentation Section, the Mechanical Design and Engineering Section and the Marine Operations Section. As well as design, development and deployment of new and improved oceanographic instrumentation and equipment, the Division was responsible for the maintenance, calibration, deployment and installation of existing systems. This involved most members of the Division in sea-going activities for the deployment, recovery and use of oceanographic equipment. In the 1971/72 ICOT Annual Report it states:–

“In the past year all three sections of the Research Technology Division have been engaged in an extensive programme of work in support of the Institute’s experimental activities. As a consequence, a large proportion of the effort has been associated with the preparation and deployment of instruments and ancillary equipment for cruise programmes.”

A major project being carried out at that time was the design and development of the ICOT Offshore Tide Gauge, including the evaluation and calibration of high accuracy low drift pressure sensors for use in this equipment.

In 1973 the Institute of Oceanographic Sciences (IOS) was formed by the merger of ICOT with the National Institute of Oceanography (NIO) at Wormley, the Unit of Coastal Sedimentation (UCS) at Taunton, and the Marine Scientific Equipment Service (MSES) at the Research Vessel Base (RVB) in Barry. David Cartwright moved from Wormley to become Assistant Director (IOS) at Bidston. Len Skinner was appointed as Head of MSES at Barry and I took over his role in the Research Technology Division at Bidston, which then became the Instrumentation and Engineering Group (IOS Bidston) with a staff of fifteen.

In 1974 Bob Spencer moved to Bidston from Wormley, where he had worked on the design and development of the NIO Offshore Tide Gauge. This work continued at Bidston with the design, development, construction and deployment of shelf edge and deep sea versions of this equipment.

With the increase in staff and equipment at that time a number of technology staff had to be accommodated in premises at the Lairage in Birkenhead where oceanographic equipment was stored, maintained and prepared for deployment at sea. The accommodation situation was considerably improved in 1975 with the completion and occupation of the Joseph Proudman Building at Bidston. As well as offices for staff, the Joseph Proudman Building had purpose designed and spacious electronics, instrumentation and calibration laboratories, a mechanical engineering design and drawing office, a well equipped mechanical engineering workshop and an assembly area for the preparation of sea-going equipment.

In the new electronics laboratory Alan Harrison and Roger Palin were joined by David Flatt and Graham Ballard in 1975. Their work concentrated on current meters, thermistor chains, CTD systems and Continental Shelf offshore tide gauges. Later work also included the measurement of flow induced voltages on submarine cables, the development and use of self-contained sea-bed mounted instrument packages (PMP), and the major design, development and use of Acoustic Doppler Current Profilers (ADCP). In the calibration laboratory Tony Banaszek specialised in the evaluation, calibration and use of high accuracy low drift pressure sensors.

Doug Leighton worked on the preparation, installation and maintenance of tide gauges at coastal sites and on offshore platforms and, with Bev Hughes, also designed, manufactured and deployed mooring systems for the deployment of oceanographic instruments at sea. Alex Kerr was responsible for the maintenance, preparation and use of the acoustic command and release systems used in mooring systems and in shallow and deep bottom mounted instrument packages.

In 1975 Bill Ainscow and Alan Browell were appointed to the Tide Gauge Inspectorate with responsibility to operate, maintain, develop and modernise the UK National Tide Gauge Network which at that time included 34 permanent tide gauges around the coast of the UK. A major development of this Network was the introduction of the remote monitoring and data transfer facilities Dataring and Dataflow, mainly designed by Roger Palin. David Smith joined the Inspectorate in 1981 and then Les Bradley in 1990, by which time 34 of the 37 stations had been modernised to include Dataring and Dataflow systems. By 1998 an improved Dataring system had been designed and the Dataflow system had been replaced by Datalink for use by the Storm Tide Warning Service and the Thames Barrier Operations Room.

In 1977 Peter Foden joined Bob Spencer in the design, construction and deployment of deep sea pressure recorders and the design, installation and maintenance of a network of island based sea level stations in the South Atlantic and Antarctic. Major developments were a deep sea bottom pressure recorder with releasable data capsules (MYRTLE), a more compact and more easily deployable deep sea bottom pressure recorder (CROCUS), deep sea bottom mounted Inverted Echo Sounders (IES), and satellite data transmission systems for data recovery from capsules and island sea level stations. In 1992 Geoff Hargreaves joined this team and then Steve Mack in 1999.

In 1985 the Taunton site of IOS was closed down and a number of Taunton staff relocated to Bidston. John Humphery moved to Bidston and continued his work on the design, development and deployment of the Sediment Transport and Boundary Layer Equipment (STABLE). He was joined by Steve Moores in 1990 and a pop-up version of this equipment was designed and built for deployment in deeper waters. In 1992 a completely new STABLE was designed and built to accommodate additional and improved sensors and with greatly increased data processing and logging capability.

Peter Hardcastle also transferred from Taunton to Bidston in 1985 and worked on instrumentation to examine the interaction of sound with suspensions. A triple-frequency Acoustic Backscatter System (ABS) was designed and used to measure sediment concentration profiles in estuarine studies. Dual-frequency self-contained instruments were designed and used for near sea-bed measurements, including a High Resolution Coherent Doppler Current Profiler (HRCDCP), a Cross Correlation Current Profiler (CCCP), and an Acoustic Bed Ripple Profiler (ABRP).

Paul Bell joined the Technology Group in 1992 and worked on the use of coastal X-band radar for oceanographic measurements. Radar reflections from waves on the sea surface are recorded and analysed using 3D fast fourier transform techniques to give directional wave number spectra. These are then used to extract the two dimensional frequency spectrum of the waves over an area. The motion of waves between successive images can also be used to yield wave velocity vectors and these can provide an estimate of the local near-shore bathymetry.

The Mechanical Design and Engineering Section was responsible for the design, manufacture and testing of all the specialised pressure housings, frames and other mechanical equipment required for the deployment of offshore instrumentation systems and equipment, and for the installation of coastal equipment. Since 1974 John Casson headed this team and he also headed the diving team required for the installation of coastal and rig tide gauges. In the engineering drawing office Judith Daniels was joined by John Mackinnon and Dave Dawson in 1976 and then by Dave Jones in 1990. The mechanical engineering workshop was headed by Kevin Taylor and other workshop staff included Alan Browell, Ken Parry, Jack Clarke, Jim McKeown and Emlyn Jones.

In 1987 IOS (Bidston) became the Proudman Oceanographic Laboratory (POL) and Brian McCartney moved from Wormley to become Director. The Instrumentation and Engineering Group then became the Technology Group with a staff of twenty-three. The scientific work of POL was then grouped into three major projects, the North Sea Project (CRP1), Dynamics of Shelf and Sea Slopes (LRP1) and Sea Level, Ocean Topography and Tides (LRP2). The Technology Group continued to support all three science projects but also had its own project, Technology Development (LRP3). LRP3 ran from 1988 to 1994 and is described as follows in the Executive Summary of the Final Report on this project:–

Proudman Oceanographic Laboratory
Final Report on the Technology Development Project 1988/94 (LRP3)

Project Team: J.B.Rae (Project Leader), D.Flatt, P.R.Foden, P.J.Hardcastle, A.J.Harrison, J.D.Humphery, R.I.R.Palin, D.E.Smith, R.Spencer, P.D.Thorne.

Executive Summary
The main objective of the POL Technology Development Project (LRP3) is to develop oceanographic observational instrumentation and equipment which will enable new, improved, more efficient or more measurements to be made more readily available to support POL scientific programmes. The principal developments are of sea-bed pressure recorders with reduced drift, increased deployment duration and in-situ data processing and recovery; sea-bed mounted acoustic doppler current profilers with potential for measuring turbulent structure in boundary layers; near-bed instrumentation to elucidate sediment erosion, transport and deposition; acoustic tomography techniques for Continental Shelf waters; and improved equipment for the modernisation of the UK permanent tide gauge network.

The principal achievements in these developments during the project have been as follows:

1. A deep sea pressure recorder with four releasable data capsules has been completed and was first deployed in 1992. The first data capsule was recovered three weeks later with excellent data. The remaining capsules will be recovered at yearly intervals and the main instrument recovered in 1996. Design, testing and construction of the satellite data link from the capsules will be completed in preparation for the first deployment of this system in 1994. The microprocessor controlled data handling and storage techniques developed have also been used in the development of island sea level stations. A new type of deep sea inverted echo sounder has been evaluated and techniques for processing and analysing the acoustic data have been developed.

2. A 1MHz self-contained sea-bed acoustic doppler current profiler has been developed using a digital signal processor, ‘C’ language software, Flash EPROM memory and more efficient acoustic transducers, to greatly improve the range, resolution, reliability, ease of use and deployment time. These techniques have also been used in the development of 250KHz and 75KHz instruments. The acoustic backscatter signal strength has been used to derive sediment concentration profiles and when combined with the current profile data provides a high resolution measurement of sediment flux. Nearly 100 deployments of these instruments have been made and new deployment techniques developed for use in high current regimes and for recovery of the ballast frame.

3. Theoretical and experimental studies on the interaction of sound with suspensions have confirmed the approach of using acoustic backscatter to make suspended sediment measurements. A triple frequency acoustic backscatter system has been designed and used to measure sediment concentration profiles in estuarine studies. Dual frequency self-contained instruments have been designed and used for measurements at sea. A prototype coherent doppler system for high resolution current profile measurements near the sea bed has been designed and tested. The sediment transport and boundary layer equipment has been completely redesigned with high capacity data loggers and the first deployment was successfully completed in February 1993. For the first time this provided a complete data set describing the benthic current and pressure environment and the associated suspended sediment profiles.

4. Modernisation of the UK permanent tide gauge network has been completed at 24 sites, and a further four will be completed by March 1994. High speed modems are being introduced to improve data transfer, and a new workstation has been installed at POL to control the network and to improve data processing, presentation and evaluation. A three site network has been designed and installed at Barrow-in-Furness, including an offshore site. A real time system has been installed at five east coast sites providing data directly to the STWS. A mid-tide pressure sensor system has been designed, evaluated and is being installed at new sites to improve datum control.

5. An extensive review of acoustic tomography has been completed and a report written presenting the theoretical background and highlighting the majority of experiments which have been conducted, mainly in the deep oceans. Shallow waters are acoustically more complex and POL interests would probably have to concentrate on relatively simple applications of the technique.

In the early nineties the North Sea project (CRP1) was followed by a new Community Research Project called Land-Ocean Interaction Study (LOIS) with two main strands at POL, Ocean-Shelf Interactions (SES) and Coastal and Shelf Interactions (RACS). The Technology Group continued to support all the scientific projects at POL with the deployment and use of existing instrumentation systems and the development and use of new and improved systems.

In 1994 the Centre for Coastal and Marine Sciences (CCMS) was formed by the merger of POL with the Plymouth Marine Laboratory (PML) and the Dunstaffnage Marine Laboratory (DML). This did result in some technology collaboration between the three Laboratories and a CCMS Technology Development Project was proposed in 1997. However, before this was fully implemented CCMS was disbanded in 2000. POL moved from Bidston to the University of Liverpool in 2004 and became part of the National Oceanography Centre (NOC) in 2010.

After the completion of LRP3 in 1994 further technology work at POL included the development of a small, freely drifting, neutrally buoyant oceanographic buoy with the capability of undulating throughout the water column. The buoyancy is adjusted under microprocessor control to enable the buoy to sink or rise at a desired rate, to drift at a set depth, to sit on the sea bed, or to drift on the surface. At the surface the position of the buoy would be determined using a GPS receiver and two-way communication would be established by VHF or satellite link to transfer recorded data and to reprogram the buoy. Pressure, temperature and conductivity can be recorded and other sensors added as required.

Another development, in collaboration with IESSG at the University of Nottingham, was of a moored surface following buoy incorporating a dual-frequency GPS receiver. GPS data and measurements of the inclination and freeboard of the buoy are transmitted by VHF radio to a shore based reference station. Data from a GPS receiver at the reference station can be combined with the buoy data to calculate the sea-surface level at the buoy relative to the reference station level every 2 seconds, to an accuracy of about 3cm. Offshore sea-level, surges, tides and waves can then be computed at the reference station and transmitted by telecom link in near real time.

To see further details and illustrations of some of the development projects carried out by the Bidston Technology Group please click the thumbnails below.

Technology Developments poster, part 1
Technology Development, part 1
Technology Developments poster, part 2
Technology Development, part 2

Shortly before retiring from Bidston Observatory in 1999 I put together two documents, one of these is a compilation of all the Bidston Technology Group Annual Reports from 1969 to 1998, and the other a compilation of all the minutes of the POL Fieldwork and Scientific Support Committee between 1986 and 1999. The former document includes a copy of the Final Report of the Technology Development Project 1988/94 (LRP3), referred to earlier, and the front page lists all of the staff in the Technology Group between 1969 and 1999, fifty in total, with the numbers increasing from nine in 1970 to a maximum of twenty-seven in 1995. Anyone interested in seeing these documents should inquire with the National Oceanographic Library at the National Oceanography Centre in Southampton.

On retiring I was delighted to be presented with the very appropriate gift of a walking GPS receiver from the POL staff. As well as accurately measuring and recording latitude and longitude anywhere on the surface of the Earth this remarkable little instrument uses an atmospheric pressure sensor, calibrated with the GPS signal, to also measure and record its elevation above sea level. I can now report that since then I have made very good use of this instrument, although recently superseded by an even more remarkable smartphone, in navigating my way over the hills and mountains of Snowdonia and the Lake District.

Sylvia Asquith at Bidston Observatory

This is the text of a speech given by Sylvia Asquith on 27th September 2017 at the Foundation of Art and Creative Technology (FACT) during the New Observatory Exhibition. Sylvia’s speech was followed by the screening of a short film by Yu-Chen Wang entitled “I wish to communicate with you”.

Good evening ladies and gentlemen.

My name is Sylvia Asquith and I joined the Bidston Observatory staff in February 1947 as Sylvia Brooks. It was a long time ago but I well remember those early days.

I was employed as a junior member of staff comprising six women and two men – Dr Doodson and Dr Corkan. As well as learning to be a meteorological observer I was introduced to two ammazing tide predicting machines! These were kept running continuously from 9 a.m. to 6.30 p.m. (4.30 to 6.30 being overtime) at 2 shillings and 6 pence per hour which is 12½ pence per hour in current money, except that we do not even have ½pence any more. The minimum wage obviously did not exist in those days!

During the wartime years the male members of staff were enlisted in the armed forces while the women gallantly went on with the work which was so vital at that time. They also did fire-watching on the roof and could tackle incendiary bombs very efficiently.

The Roberts-Légé machine was moved to a purpose-built underground room in the grounds and kept running from there as protection in case the Observatory was bombed. The Kelvin machine was already kept in a cellar. There were incidents of bombs falling on the roof and on the hill generally and on one occasion a landmine landed near the building causing windows to be blown out but without causing significant damage.

After the war Dr Rossiter and two female staff were demobbed and returned to their duties at the Observatory.

After joining in 1947, I received instruction on running a tidal machine, stopping at the correct moment and reading off the time showing at the zero point, and noting down high and low waters in succession. Times done first and the high and low to correspond. Also, you need to check the data when taking over from someone else in case they had got it a day out. All the wheels and pulleys are connected by a fine gold wire and represent forces of the moon and sun on the tide. As the biggest influence on the tide is the moon, that is represented by the largest wheel, “M2”, which has the largest amplitude on it. The names denote George Darwin, a relation of Charles, who was first to devise the method of harmonic analysis. The “M” and the letters nearest to it alphabetically refer to the Moon and similarly “S” to the Sun. The “2” means twice, etc.

The machines were stripped down and cleaned regularly by the three Doctors. However, one day they were away on business in London and the belt snapped! Someone remembered that bootlaces sewn together and carefully measured would be a good standby, so a staff member rushed to the shops and came back with laces and with a sewing machine supplied by Mrs Doodson from the house, and a new belt was made. Fitting was a bit tricky but we managed and the work was able to continue. The returning staff were most impressed by the ingenuity of their colleagues.

Returning to the process… The predictions came off the machine and the sequences were differenced and the differences smoothed by a senior staff member. The smoothed predictions were then typed up for publication in the Admiralty Tide Tables and photograph copies made of the originals. Yes, we even had a photographic studio and print room on site. We always tried to work two years in advance to allow for the checking and printing of predictions.

For all tidal predictions a tidal analysis is required using twelve months of actual height values and following the completion of this any year can be put onto the machine going as far back or as far forward as desired. That means that, provided we know the exact date in history for an event, we could identify the tidal conditions existing at that time.

Bidston was also a Met Office recording station and I was put in charge of the observers. I’m proud to say that we received two awards for our Met returns to London, indicating the very high standards, consistency and quality of our recording and reporting.

The one o’clock gun was a feature of the Observatory dating back to Victorian times giving an absolute and accurate timing to enable chronometers for shipping and people and businesses across Merseyside to set their own timepieces by. This was resumed in 1946 and fired electronically every day from Bidston to the gun at Morpeth Dock. Eventually this finished on July 18th 1969 and I had the pleasure of being the last person to fire the gun.

I returned part time in 1967 after ten years working from home – not so much of a modern concept as you may have thought – and continued as a Scientific Officer until retirement in 1990. Yes, I saw many changes in my 43 years association with Bidston, from a staff of 8 to a staff of 80 housed in two buildings. Today computerisation means that predictions now take microseconds where at the start using these machines they took about three days per port, but we are talking pre-computer times and these machines represented the height of technology in their own era and as such deserve their place in history.

I hope that I have given you a flavour of the history and use of these machines and the fantastic team that I worked with to operate them.

We should always remember that the outputs from these machines were used by individuals and organisations across the world who depended totally on their accuracy to help ensure safey at sea and around coastlines.

Thank you for listening and I hope that you enjoy the film.

From storm surges to literature

The connection between storm surges in the North Sea and the new British Nobel Laureate, Kazuo Ishiguro

Judith Wolf, October 2017

I only met Kazuo Ishiguro’s father once. In April 1981 we both attended a session of the 5th UK Geophysical Assembly at the University of Cambridge. I was in the throes of my PhD study and looking at the effect of wind gustiness on wind-driven currents in numerical models. In our session, on “Air-Sea Interaction” there were only three of us (the third being Ed Monahan, who worked on wind waves), and being the last session on the Friday afternoon, and rather peripheral to the main topics of the conference, there were only the three of us left there to listen to each other’s presentations and dutifully ask questions. Shizuo Ishiguro’s talk was entitled “Extreme surge predictions by the quasi uniform steady wind/pressure field method” (*); he was known to me by reputation, although by this time his work was something of an anachronism, as the world had moved on to digital computers. He had built an analogue computer to model North Sea storm surges and was employed, like myself, at the Institute of Oceanographic Sciences (IOS), but based at Wormley in Surrey, while I worked at Bidston Observatory in NW England.

His storm surge calculator was an electronic analogue computer, originally developed at the Marine Observatory in Nagasaki, Japan for applications in the fishing industry. In 1957 he came to England, at the invitation of George Deacon, the Director of National Institute of Oceanography (the precursor of IOS Wormley) in Wormley after they met at a tsunami conference in Japan. Initially he was on a UNESCO fellowship, then joined the permanent staff in 1959 as an “oceanography engineer” and developed his machine to model North Sea storm surges. The calculator converted hydrographic and meteorological data into voltages and electric currents and produced output on an oscilloscope relating to the behaviour of the surge wave at coastal locations.

Photo of Shizuo Ishiguro and his storm surge modelling machine. (c) National Oceanography Centre.
Shizuo Ishiguro and his storm surge modelling machine. (c) National Oceanography Centre.

When he retired he took the calculating machine home and tinkered with it in his shed until his death in 2007. It is now in the mathematical collection, the Winton Gallery, in the Science Museum in London, which I visited on 1 January 2017, seeing the machine at first hand, for the first time.

Shizuo’s son, Kazuo Ishiguro, was born in Nagasaki in 1954, but moved with his family to the UK, as a boy. He has said that if he hadn’t moved to the UK he might never have become a writer.

* For more information, see http://journal.sciencemuseum.org.uk/browse/issue-06/understanding-storm-surges/.

My early life at Bidston Observatory

Joyce Scoffield

Originally, from 1955, I worked in the Met Office at Speke Airport (later to be called Liverpool Airport and subsequently John Lennon Airport). I very much enjoyed being a weather observer – sending observations up to the control tower to be passed on to aircraft, but the job involved shift work, which included regular night duties. This was fine till I got married in 1961. At that stage, I became less enthusiastic about shift work and about the amount of travelling involved between Greasby and the airport: bus – ferry – bus – at least an hour each way. I didn’t drive in those days.

So I decided to look for another job. Bidston Observatory came to mind. It was much nearer home and I knew they had a weather station there. So I wrote to the Director asking him if there were any job vacancies. He – Dr. Rossiter – invited me to go for interview and duly offered me a job! It was as easy as that in 1961. Nowadays, with high competition for every post, people can’t believe that it could ever be that easy.

I was a very basic assistant at Bidston – one of 10 girls who were classed as ‘computers’. We operated tidal prediction machines – large machines consisting of gears, weights and pulleys which could be set to represent the contributions of sun, moon, location, etc. to the tides of a port. You can read all about these machines in other articles on this site.

The scientific programs which turned these numbers into tidal predictions were written by the scientists – them upstairs! – it was all way beyond our understanding. We just operated the machines by foot pedals and a hand wheel and wrote down the answers – the more senior girls scanned our numbers looking for obvious errors. When plotted on a graph, the figures would form a smooth curve representing the pattern of the tide on consecutive days at the port concerned. Once the figures had been accepted as correct, we had to write them down on prepared forms – using pen and ink – no biros allowed – neat handwriting was essential for the job! There was a darkroom in the basement where our carefully written-out tables were photographed before being sent to the port authority concerned. This was a typically old-fashioned dark room with trays of chemical developers, subdued red lights, etc. In those days we did tidal predictions for many parts of the Commonwealth.

Another of the girls’ duties was to maintain a daily weather diary. At 9 am each day – Saturdays, Sundays and Christmas Day included – the duty observer would take readings from the thermometers in the Stevenson’s Met. Screen sited on the Observatory lawn, change the temperature and humidity charts on the analogue instruments also sited in the met screen and change the chart in the tipping bucket rain gauge, as well as measuring any rainfall recorded in the rain bottle. The observer would then go up to the roof to change the daily sunshine card in the Campbell-Stokes sunshine recorder. The sun’s rays were concentrated through a solid glass ball to produce a burn on the specially-treated card. In the summer, this recorder was located on the roof of the ‘Dines cabin’ – the climb up the ladder to this site could be rather precarious on a windy day. In winter, the sunshine recorder was moved to the outside of one of the domes accessed from inside the dome by a small door (again up steps) facing due south. Because the sun is a lot lower in the sky in winter, and needing a smaller range of exposure, this was obviously safer for the staff than the outside summer climb.

Inside the ‘Dines cabin’ was the Dines anemometer recording wind speed and direction on an analogue chart. There again the observer changed the chart on the instrument’s cylinder. The final job was to note the visibility from all sides of the roof. On fine days, we had a great view over Liverpool with the Pennines in the distance. To the north, we could see Blackpool and occasionally Black Coombe in Southern Scotland. To the west, we could see the Great Orme and the Snowdonia range.

Taking the retrieved charts and the sunshine card, the observer returned to the office and calculated three hour readings for the past 24 hours and entered them into the weather diary. These diaries were beautifully produced for us by a company in Liverpool and, I believe, they are now housed in the Wirral Libraries Archive in the Cheshire Lines Building in Birkenhead.

Photo of the One O'Clock Gun, still sited in Birkenhead
The One O’clock Gun is still sited in Birkenhead

Another job for the duty observer was to fire the one o’clock gun at precisely 1 pm Mondays to Fridays. This was a tradition dating back to the building of the Observatory in 1866, when accurate time was not available to the business people of Liverpool. A very accurate clock in the Observatory was connected by landline to a gun sited at Morpeth Dock, on the Birkenhead side of the Mersey. When the observer flicked a switch at Bidston the gunfire was heard in Liverpool (the gun having first been duly primed by a docker at Morpeth). The practice was discontinued at Bidston in 1969, but still continues at observatories in other parts of the world.

The girls had little association with the scientists who were mostly men. At coffee time – strictly 1045-1100 am (we daren’t overstay our time limit) – the men stood round the marble fireplace in the old dining room and the girls sat at the tables. There was little communication between the two groups. Incidentally, the girls prepared the coffee on a rota bases – strictly 50% warm milk – heated in a pan and 50% water. When the coffee was ready, spot on 1045 am, we pressed a buzzer – I think it was 2 buzzes for coffee break – to summon the staff from upstairs.

At lunch time, on a fine day, the menfolk would often take a brisk walk over Bidston Hill usually talking shop. The girls tended to sit on the observatory front door step eating their sandwiches.

It was quite a hierarchical situation at the observatory in those days – a total staff of only about 18 people – a sort of strict family atmosphere – and always quiet. I enjoyed working there.

When I was expecting my first baby in 1964, people seemed quite relieved. It was several years since anyone had become a mum and they had thought there was a hoodoo on the place! Dr. Rossiter was very solicitous towards me when I became pregnant – he insisted on my desk being moved downstairs to save me having to climb anywhere or do anything at all strenuous. There was no thought of my returning to work after having the baby. Mums did not return to work in those days! In the event, I did return to Bidston part time when my younger son was nine years old and attitudes towards working mums were starting to ease.

More stories of life at Bidston Observatory at this time can be found in my book “Bidston Observatory: The Place and the People” (Countryvise Ltd. 2006. ISBN: 978190121687).

Directing Bidston

Graham Alcock, 21 October 2016

I joined Bidston in 1972 and took early retirement in 2000, having survived five name changes (Institute of Coastal Oceanography and Tides, Institute of Oceanographic Sciences, Proudman Oceanographic Laboratory, Centre for Coastal and Marine Science and back to the Proudman Oceanographic Laboratory). Here are anecdotes about some of the Directors during that time.

I only met ICOT’s Director, Jack Rossiter, when he was chair of my interview panel in May 1972, because unfortunately he died before I was appointed. The subsequent ICOT Acting Director, Geoff Lennon, had a turn of phrase – “it occurs to me” – and that was used in my letter of appointment, suggesting that I might like to join a scientific cruise in September 1972, pre-dating my actual appointment date of 1 October. What Geoff omitted to say was that the cruise was on the RRS John Murray, an ex-fishing trawler rumoured to have been bought by NERC for £1, which had such a nasty rolling motion in anything higher than a Force 2 breeze that it was always difficult to encourage Bidston staff to go on it. That was my introduction to “wet” oceanography – subsequently I always preferred the “dry” oceanography remotely carried out by land-based radar and space-borne satellites.

The first of the frequent reorganisations of NERC’s marine science occurred in 1973, when Bidston became part of IOS, together with what had been the National Institute of Oceanography at Wormley and the Unit of Coastal Sedimentation at Taunton. Scientific rationalisation brought the Tides staff at Wormley to Bidston and David Cartwright was appointed as IOS Assistant Director.

David was a world-class researcher and an elected Fellow of the Royal Society; but as he said on his interview for The British Library’s “Voices of Science”, he “wasn’t temperamentally suited to getting too much involved with administration”. I remember attending an IOS meeting at Wormley to allocate funding for the year (in my capacity as responsible for contracted and commissioned research at Bidston), when David left early to catch his train back to Birkenhead before Bidston finances had been fully discussed and agreed. James Crease said: “I suppose we had better allocate some funds to Bidston”.

I worked on a number of projects for David and although he was the senior author of our joint papers he used the format of listing the authors in alphabetical order. For the George Deacon 70th Birthday commemorative volume of “Deep Sea Research”, we wrote a paper on our analysis and interpretation of telephone cable voltages across the English Channel to provide information on the ocean current flow. The DSR Editor knew of David but not me, and on his assumption that the first named author was the senior author, his acceptance letter (no emails then) to us was addressed to Professor Alcock; much to our amusement.

Another project that I worked on with David was the analysis of data from SEASAT – the first satellite dedicated to oceanography. In the 1970s, our visit to Venice for a SEASAT Workshop enabled David to indulge in two of his passions: railways (Liverpool – London – Calais – Venice is some train ride) and wine (his wife was French). A very good bottle consumed by us on the return rail journey was paid for using a pile of Italian Lire left over when we had discovered that our Hotel accommodation had been paid by the Workshop organisers.

After our successful campaign in the late 1980s against Bidston’s closure and transfer to Wormley, Bidston became autonomous and was renamed the Proudman Oceanographic Laboratory. (The IOS Taunton site was closed and staff transferred to Bidston or Wormley.) Brian McCartney was appointed POL Director and, in my opinion, the next eight years were Bidston’s halcyon days: we reported directly to NERC HQ, without an intervening level of bureaucracy of IOS or later CCMS or NOC.

Brian always let Group and Project leaders have a full say at the Management Committee; especially at the annual allocation meeting (consequently it sometimes went on for two days); so I felt that if you inevitably didn’t get all the money or equipment that you had bid for, you still accepted his final decisions because you had had a fair hearing. Brian was also careful to include all “Prime-movers” (the researchers) in the vision and major decisions that directed our strategy. In those ways, I believe that he made sure that all staff felt that they had had some input in formulating the strategy that POL took under his Directorship, with ensuing collective responsibility and underpinning the Bidston “family” atmosphere that John Huthnance mentions in his article.

Brian had been Head of the Engineering Group at Wormley, so it was not surprising that technology development at Bidston thrived during his Directorship. Bidston became one of the few European laboratories with the capability of developing and deploying oceanographic instruments in the coastal zone, shallow or deep water. Together with our expertise in the analysis and interpretation of the data and the world-class hind-casting and fore-casting modelling expertise developed under Norman Heaps’ leadership, Bidston’s scientists and engineers were in great demand for European Community/Union oceanography projects. Not bad for an organisation later accused of scientific isolation because it was on a hill five miles away from Liverpool University.

Under Brian’s leadership, POL became the host laboratory for the North Sea Project, the first large “Community Research Project”, involving many other research institutes and university research departments. We developed a strategy of funding all our Laboratory Science and Technology Projects from a triple combination of Commissioned Research (mainly from the DoE, MAFF and MoD), EC/EU Programmes and the NERC Science Budget; giving us some financial stability.

Happy days!

With the movement of IOS Wormley to Southampton University in the 1990s, NERC carried out yet another reorganisation of its marine science, lumping its remaining oceanographic laboratories at Bidston, Oban and Plymouth, into a “Centre” for Coastal and Marine Science. Jackie McGlade was appointed to what I always considered was a poisoned chalice of a job as the CCMS Director. (CCMS was disbanded in 2000, the then NERC Chief Executive admitting that the CCMS experiment had failed.) Jackie faced a fair degree of hostility from some senior staff, particularly at Plymouth where her office was situated, as staff at the three previously autonomous laboratories tried to work out what exactly was the purpose of the “Centre”.

I worked closely with Jackie on aspects of commissioned research and scientific applications across CCMS and got on well with her. She tended to be quite open about what she felt (perhaps that’s what some senior CCMS staff didn’t like) and because of this I was probably the first Bidston staff member to find out about the proposed closure of Bidston and transfer to Liverpool; a decision that had been taken by the then Bidston Director, without, as far as I know, any consultation with Bidston staff (the Management Committee had been an early casualty of his appointment.) Jackie and I were travelling on the London Underground, back from a meeting with an Intellectual Property lawyer, when Jackie asked me what I thought about the plan to close Bidston and move everyone to Liverpool University. I was non-committal.

Frank Field, MP for Birkenhead, had been a main factor in NERC’s decision not to close Bidston in the 1980’s and I informed him of the decision. I was summoned to the Bidston Director’s office and told, in no uncertain terms, that he was the Director and made the decisions, which I had to obey as a member of his staff without discussion. I demurred. I took early retirement in 2000, having thoroughly enjoyed most of the time at Bidston and working for most of the Directors.

(The British Libraries’ “Voices of Science” is at http://www.bl.uk/voices-of-science/interviewees. As well as David Cartwright, other oceanographers interviewed are James Cease, Anthony Laughton, John Woods and Philip Woodworth.)

Bidston recollections

John Huthnance, 7 Oct 2016.

I joined IOS Bidston (as it was then) in October 1977. The validity of my appointment could be questioned as the appointment letter came from DB Crowder (the Bidston administrator) who left before I arrived.

It was a good time to join. There were about 80 staff in total, few enough to give a “family” atmosphere with the feeling that everyone knew everyone else. Several colleagues had been taken on during the early 1970s but it was still a time of expansion rather than otherwise.   Scientists like myself had a fairly free hand to pursue promising lines of research within a fairly broad remit. I enjoyed a feeling of support from fellow scientists to do just this. Much of the funding came through a consortium of several government departments with an interest in our research. The negotiations were at some distance from most of the scientists who did not have to spend much time writing proposals, yet it was good to know of “user” interest in our work, always a characteristic of Bidston science. It was still possible to be “the” expert in a topic, a rarity today. I was lucky.

Everyone was expected to go to sea at least once. My first experience was a long trip in October 1978 on RRS Discovery from South Shields to Recife (Brasil)! We had calm across the Bay of Biscay but gradually increasing seas as time progressed. Green terminal screens on board added to my discomfort. It also got hot enough to affect some of the electronics and the salinometer bath struggled to maintain any standard temperature. My struggles with the latter resulted in being one of many co-authors on a paper about steric height around the equator – as I discovered when the paper was published.

My next research “cruise” was less exotic, to the North Sea on RRS John Murray. The picture shows the arrangement for under-way surface sampling – a CTD (device for measuring the conductivity and temperature of sea water at a known depth) in a bucket lashed to the side.

Arrangement for under-way surface sampling
Arrangement for under-way surface sampling

I have seen some changes in the “style” of research – some for the better! In the 1980s John Bowman (Chief Executive of NERC) told us that if we wanted students, we should get a university job. Now student supervision is encouraged (and helped by being in Liverpool). When I started, current meter data processing typically involved printing out all the recorded values. Models were semi-analytic or had reduced dimension or coarse resolution. My thesis compared a few tidal harmonic constants between measurements and a simple model. Now we have millions of observed values, billions of model output values, and we need computer programs to translate these to something viewable. In the end, science wants to compare two independent numbers for the same quantity. With the “Big Data” that modern science generates, is it harder to think what we are aiming at?

 

North Sea Project - monthly surveys
North Sea Project – monthly surveys

Another change is towards “inter-disciplinary science”. I have been a believer in this owing to early good experience: a seminar at Bidston by John Allen (University of Reading) about sand transport gave me an idea for how sand banks might grow (I had already published about the character of tidal flow around the Norfolk sand banks). The “flip” side to inter-disciplinarity is the overhead of communication with a wider group of scientists. Anyway, Bidston (now Proudman Oceanographic Laboratory – POL) saw this in a big way in NERC’s first “Community Project”, the North Sea Project (formally 1987-1992). John Howarth and I were respectively coordinators of the monthly “surveys” (see figure) and intervening “process studies” for 15 months in 1988-89. I recall a “spat” with Philip Radford (PML) at the concluding 1993 Royal Society Discussion meeting. I showed a diagram characterised by physics-ecosystem. Philip countered with physics-ecosystem. These are of course quite compatible, differing only by which part is under the microscope.

The North Sea Project was followed by the “Land-Ocean Interaction Study” LOIS in the 1990s with POL at the centre of coastal, shelf-edge and modelling studies. Such large-scale projects with many participants involved a Steering group and many rail trips to London. At the same time (and possibly inspired by NERC) the EU Marine Science and Technology Programme (MAST) began. My main involvement was in “Processes in Regions of Freshwater Influence” (PROFILE; two phases), “Ocean Margin Exchange” (OMEX; two phases) – both inter-disciplinary – and “Monitoring Atlantic Inflow to the Arctic” (MAIA) which somehow managed to be only physics. MAST projects had several European partners; the beaten track became the M56 for Manchester airport and flights to partners’ laboratories, EU Brussels and MAST gatherings in rather nice places (e.g. Sorrento, Vigo, . . ).

After formation of Southampton Oceanography Centre SOC, there was an April 1st announcement setting up the “Centre for Coastal Marine Science” CCMS in the mid-1990s as a counterpart to SOC. CCMS incorporated PML, POL and SAMS and resulted in more trekking, to Plymouth and Oban. This was good for inter-lab communications but management went awry, especially regarding finances, and POL became “independent” again (within NERC) in 2001. 2001 was also the year of design for the new building for POL in Liverpool (pictured). There were several reasons for unhappiness about this; building down to a price, inevitable open-plan offices (being cheaper and set by Swindon precedent), more time and expense of commuting for most staff. I had the “joy” being project “sponsor”. In building procurement this does not mean having the money but rather liaison between the “owner” (NERC with the money) and the design team. I was in the architect’s Birmingham offices on “9/11”.

POL's new building in Liverpool
POL’s new building in Liverpool

After more than a year’s delay on completing the Liverpool building, we finally left Bidston at the beginning of December 2004.

A brief history of Bidston Observatory

Bidston Observatory was built in 1866, when the expansion of Waterloo Dock forced Liverpool Observatory to re-locate to Bidston Hill. It was built alongside Bidston Lighthouse and Signals Station, on land owned by the Mersey Docks and Harbour Board. George Fosbery Lyster was the architect.

George Fosbery Lyster
George Fosbery Lyster

John Hartnup, astronomer and Assistant Secretary to the Royal Astronomical Society, had been the Director of Liverpool Observatory since it was built in 1843. Amongst his achievements was the calculation of the longitude of Liverpool, which was important for navigation and the development of the port. He presided over the move to Bidston Hill, and continued as director of Bidston Observatory until his retirement in 1885, when he was succeeded by his son. The second director, John Hartnup Jr  died on 21 April 1892, when he fell from the roof of the Observatory while making meteorological observations.

Bidston Observatory and Lighthouse, postmarked 1907
Bidston Observatory and Lighthouse, postmarked 1907

Over the years, the emphasis of the Observatory’s work shifted from astronomy to other things, but always in the tradition of Time and Tide, so important to the port of Liverpool.

Of Time. The progression from observations of the stars, to the determination of longitude, to the calibration of chronometers was a natural one. The Observatory’s two levels of cellars and other features made it especially suited for calibrating chronometers under controlled conditions of temperature and seismic vibrations. Mariners sent their chronometers from all over the empire for calibration at Bidston. The One-O-Clock gun at Morpeth Dock was signalled from Bidston Observatory.

Of Tide. Ever since Liverpool’s harbour-master William Hutchinson (the same fellow who pioneered the use of parabolic reflectors in lighthouses on Bidston Hill) took the first extended series of tidal measurements over a period of nearly thirty years, Liverpool had led the world in tidal studies. This work became centred at Bidston Observatory when the Liverpool Tidal Institute was set up there under Joseph Proudman’s direction after World War I. Arthur Doodson’s work with mechanical computers for tide prediction happened here. One of his machines was used to predict the tides for the D-Day landings.

Observatory staff by the original one-o-clock gun, after its removal to Bidston Hill from Morpeth Dock.
Observatory staff by the original one-o-clock gun, after its removal to Bidston Hill from Morpeth Dock.

In 1969, the Natural Environment Research Council (NERC) took over responsibility for the Observatory. Oceanographic research continued to expand under their auspices. During the 1970’s, the Joseph Proudman Building was constructed in the former kitchen gardens of Bidston Lighthouse.

In 1989, the Observatory, Lighthouse and the perimeter wall enclosing them became Grade-II listed buildings.

In 2004, the Proudman Oceanographic Laboratory moved from Bidston Hill to a new building at the University of Liverpool. Their oceanographic research is still continuing today, but now in the guise of the National Oceanography Centre.

The departure of the Proudman Oceanographic Laboratory from Bidston Hill began a 12-year limbo. NERC’s original plan to sell the site to a developer aroused opposition from local pressure groups, and the spectre of an eleven-story high-rise residential development was averted. In 2012, NERC applied for and obtained planning permission and listed buildings consent (now lapsed) to convert the Observatory into four residential apartments. Later that year, the Joseph Proudman Building was demolished. Having put the Observatory to the market on several occasions, NERC finally sold it in 2015 to a developer (Bidston Observatory Developments Limited), who had outbid a community-led consortium. This was the lowest point in the Observatory’s history. A period of systematic neglect saw a rapid deterioration of the fabric of the building and the appearance of the grounds, exacerbated by water ingress, unpaid bills and a winter with no heating, and the Observatory was nominated to the Victorian Society’s list of the top ten endangered buildings of 2016.

Fortunately, the Observatory was sold again in September of 2016. The new owners have announced their intentions to operate the Observatory as a not-for-profit artists’ research centre and to incorporate an exhibition celebrating the Observatory’s scientific heritage.

 

 

 

Hartnup moves in

This article appeared in the Liverpool Mercury on 20th December 1866, two days before Liverpool’s astronomer, John Hartnup, took possession of Liverpool’s shiny new observatory on Bidston Hill. It makes fascinating reading 150 years later.

The New Liverpool Observatory

Bidston-hill has hitherto been chiefly noted for its picnic parties, and for entertainments in which ham and eggs were the principal ingredients. It will now acquire a wider celebrity as the site of one of the most complete observatories at present in existence – one which is certain to make the Dock Board spoken of with respect by men of science, and to render Mr. Hartnup’s position, as astronomer of Liverpool, an object of something like envy to his professional brethren. For the interests both of the port and of science, it was certainly a good thing that the space which the old observatory has occupied during the last 22 years, on the Prince’s Pierhead, was required for docks. Close to the river on one side, and the murkiest part of the town on the other, Mr. Hartnup was often in a fog, not by any means intellectually, but materially, and still more frequently had his nicest observations interfered with by the smoky canopy which overhung his post of observation. Obliged to cast about for a new site, the dock board selected Bidston-hill as the most eligible situation to be found in the neighbourhood for an observatory. The design and erection of the building were left to Mr. Lyster, the dock engineer, and he and his staff have produced a work of which they have no reason to be ashamed. Commenced in 1864, it has been gradually growing up by the side of the old lighthouse, which formerly was the sole occupant of the height, and now with its two domes and picturesque outline, stands out as a prominent feature in the landscape. The transfer of instruments from the old observatory has been for some time in progress, and at the beginning of next year Mr. Hartnup will probably be able to resume his labours – made still more important by this change – under conditions more favourable than he has yet enjoyed.

Externally, the new observatory has a bold and massive appearance, which accords with the position in which it is placed. A building perched alone at the summit of a hill is in danger of looking insignificant from one or other points of view, but Mr. Lyster has so well arranged the different fronts that from all aspects an effective grouping is presented. Two domes, springing from octagonal towers at the east and west extremities of the south front, are prominent features of the building. Beneath one is the “equatorial”, for making astronomical observations, and beneath the other an instrument called the transit. The domes enclosing these instruments have apertures at several points, and are made to revolve, so that observations can be taken in any part of the heavens. The substantial character of the whole building strikes the observer at once. It is founded upon a rock, and if the waves as well as the winds could come to Bidston-hill, Mr. Hartnup’s castle would not be likely to fall. Strength and solidity are characteristics of Dock Board work, but there are special reasons for making an observatory, from foundation to summit, firm and secure as builders’ skill can contrive. Some of the operations carried on are so delicate that the variation of almost a hair’s breadth would seriously affect the results, and hence the utmost precautions have been taken to avoid the vibration to which all but the most substantial buildings are liable. A deep foundation excavated out of the solid rock and thick stone walls to form the superstructure were not considered sufficient to secure perfect immovability, and to prevent all possibility of vibration from anything short of an earthquake the building has been insulated from the surrounding rock to the depth of 12 or 14 feet by a trench about 18 inches wide. Even this has not been deemed a sufficently stable basis for the transit. That instrument is located immediately beneath the dome at the south-east angle of the building. It is used for taking the time, fixing the latitude, and determining the declination of the stars. These operations require the utmost accuracy of observation, and consequently the most perfect steadiness of position. To support the instrument a huge pillar, nine feet in diameter, has been carried up from the solid rock to the floor immediately beneath the dome, and this pillar, though passing through several floors, and apparently in contact with them, actually touches the building at no part. In other respects, the thorough adaptability of the building to the purpose for which it is intended has been studied. In many of the processes uniformity of temperature is very necessary, and towards securing this lofty cellars have been excavated in the basement, where an efficient heating apparatus, communicating with all the apartments in the building, is situated. The other internal arrangements are in a corresponding style of completeness. There is a fine chronometer room 36 feet long by 21 feet abroad; an anemometer room and a library, each 18 feet by 21 feet; a computation room; and, in short, every provision for carrying on efficiently the work belonging to an observatory. The northern portion of the building forms the private residence of Mr. Hartnup, and in reference to the arrangements of which it need only be said that the comfort and convenience of its occupant have been consulted in every particular.

There are a good many people in Liverpool, we dare say, who have a very shadowy notion of the objects of an observatory, and the labours which Mr. Hartnup has to perform. Quoting from his last report, we will let the astronomer tell in his own words what are the merely routine duties of the observatory :-

Observations are regularly taken with the transit instrument, for the purpose of ascertaining the local time. From the local time so obtained, the Greenwich mean time is deduced and communicated to the port daily by the dropping of the time-balls at the Observatory and at the Victoria Tower. The clocks at the Victoria Tower and Town Hall, and also the seconds clock seen from the Exchange flags, are controlled from the Observatory. The other public clocks on the dock estate are regulated twice each week, and a record is preserved showing their errors at the time they were regulated. The velocity and direction of the wind, and the fall of rain, as derived from the self-registering anemometer and rain-gauge, are tabulated for each hour of the day, and hourly readings are taken from the tracing produced by the self-registering barometer. The results thus obtained are tabulated, and the mean reading at each hour of the day is taken at the end of every month. The ordinary meteorological observations obtained by means of the standard barometer, thermometers, hygrometers, &c., are taken at eight and nine a.m., and at one, three, and nine p.m. daily. A telegram containing the corrected readings of the barometer, wet and dry thermometers, strength and direction of the wind, and general state of the weather for the proceeding 24 hours, is forwarded daily at eight a.m. to the Meteorological Department of the Board of Trade. Weekly meteorological observations are forwarded to the Mersey Docks and Harbour Board, and to the medical officers of health for Liverpool and Birkenhead. Monthly and weekly meteorological observations are forwarded to the Registrar-General of Births, Deaths and Marriages; and a tracing of the record produced by the self-registering barometer, together with an account of the hourly strength of the wind, &c., are supplied daily to the Liverpool Underwriters’ Association.

The value of the observatory in keeping an exact record of time is shown by the fact that in Liverpool there are, on an average, upwards of 2000 chronometers dependent on the time disseminated from the observatory for their errors on Greenwich mean time, and of their daily rates obtained while the ships to which they belong remain in port. Now that the observatory has been removed to Bidston, it is possible that the time-balls will give place to a time-gun, which is found to possess several advantages over the ball. With regard to meteorological observations, their importance is every year becoming more largely recognised, and during the last 20 years Mr. Hartnup has contributed not a little to the advance which this department of science has made by his carefully compiled tables of results.

In a more direct and immediate manner, the observatory at Bidston will be of immeasurable value to Liverpool by reason of the facilities it affords for testing nautical instruments. The seaman is chiefly dependent for a knowledge of his chronomoter, compass, sextant, &c. Errors in these have, times out of number, led to the destruction of noble ships, and the loss of many lives and the importance of efficiently testing nautical instruments has long been present to the mind of the astronomer. At the old observatory, chronometers only could be tested. Its nearness to the docks, the possible proximity of iron ships, and other disturbing influences, rendered the testing of compasses out of the question. At Bidston, all these difficulties will be removed, and it is proposed to erect a wooden house specially for the testing of compasses. If this be done, it is to be hoped nautical men will take advantage of the opportunity afforded them of ascertaining that their compasses act properly. It will also be possible at Bidston to test sextants; and if arrangements are made for that purpose, the Liverpool Observatory will be, with the single exception of Kew, the only place in the kingdom at which these instruments are tested. The practical advantage of subjecting instruments to a systematic test has already been exemplified in the case of chronometers. It is often that three or four voyages elapse before a captain ascertains the exact rate of his chronometer, whereas the testing process at the observatory puts him in possession of the information at once. This is the mode of testing chronometers –

All chronometers received at the Observatory are compared daily with the normal clock, which is kept as nearly as possible to Greenwich mean time. From subsequent astronomical observations, the daily errors of this clock, at the times of its comparison with the chronometer, are deduced, and the correction for each day, thus obtained, is applied to the daily comparisons of all the chronometers. In this way the error of each timekeeper is found daily, with as much accuracy as it is well possible to attain. The temperature in a glazed chamber is kept, by artifical means, between 50′ and 85′, and changed weekly 10′ or 15′, in order to show the change of rate that may be expected on going from a temperate to a tropical climate. The record supplied to the captain or owner of each chronometer, contains its error on Greenwich mean time for each of the first few days; and subsequently it is given at the end of each week, together with the mean daily rate, the temperature to which the instrument has been exposed, and the greatest variation of rate between any two days in each week. The corrections for imperfect adjustment are sometimes found to be so large or so irregular as to render it troublesome or difficult to apply them all efficiently, and in such cases the record becomes a serviceable guide to the maker, as it directs his attention to the peculiar fault, and often enables him to make the necessary adjustment at once.

It is rather puzzling to be told that the wind is made to register its own velocity, force, and direction; that the quantity of rain which falls is measured and recorded without human interference; and that the atmosphere marks its own variations on a sheet of paper. Yet all this is done by means of the anemometer, rain-gauge, and barograph – contrivances as ingenious as they are effective. Any one who has been in the neighbourhood of the observatory must have observed on the roof a sort of horizontal windmill, consisting of four hemispherical cups. These serve the double purpose of keeping a four-feet pressure plate facing the wind and turning the shaft which runs through into the room where the anemometer is situated. This shaft, by an ingenious contrivance, regulates the motions of a pencil placed in contact with a sheet of paper stretched round a slowly revolving cylinder. The sheets of paper which receive the record made by the pencil are divided by vertical lines into spaces equal to the hourly motion of the cylinder, and by horizontal lines into other spaces, representing the pressure of wind per square foot. The barograph, or self-registering barometer, has been in use about three years, and the Liverpool Observatory is the only institution which possesses an instrument of this character. It was invented by Mr. Alfred King, of this town, and shows great ingenuity of construction. In the ordinary barometer the variations in the atmospheric pressure are indicated by the varying height of a column of mercury within a tube; in the floating barometer these variations are made evident by the movements of the tube itself, and its changes of position are recorded in a somewhat similar manner to that adopted in connection with the anemometer. There are various other interesting features connected with the observatory, but we must bring this notice to a close. In many respects, the establishment of the new observatory is an important event, and there can be no question that Mr. Hartnup will turn to good account the increased advantages he will possess for carrying on his useful labours in the fine institution placed under his charge.